
LUSTRE: An Interactive System for Entity
Structured Representation and Variant Generation

Kun Qian∗, Nikita Bhutani#, Yunyao Li∗, H V Jagadish#, Mauricio A. Hernandez∗

∗IBM Research - Almaden, #University of Michigan, Ann Arbor
qian.kun@ibm.com, {yunyaoli, mahernan}@us.ibm.com, {nbhutani, jag}@umich.edu

Abstract—Many data analysis and data integration
applications need to account for multiple representations
of entities. The variations in entity mentions arise in complex
ways that are hard to capture using a textual similarity
function. More sophisticated functions require the knowledge
of underlying structure in the representation of entities. People
traditionally identify these structures manually and write
programs to manipulate them: such work is tedious and
cumbersome. We have built LUSTRE, an active learning
based system that can learn the structured representations of
entities interactively from a few labels. In the background,
it automatically generates programs to map entity mentions
to their representations and to standardize them to a unique
representation. Furthermore, LUSTRE provides a user-friendly
interface to allow user declaratively specify normalization and
variant generation functions for downstream applications.

I. INTRODUCTION

Much of today’s information is structured around and ref-
erenced by the properties of real-world entities. Entities, how-
ever, lack a unique representation. The problem of reconciling
name variations of entities forms the core of many entity-
centric applications such as data integration, knowledge base
construction, and search. Reconciliation is challenging due to
issues such as non-uniform variations in mentions of an entity
and mention ambiguity [1] (a named entity mention is an entity
mention in the form of a named entity text string that refers
to a named entity). The variations arise from multiple factors,
as illustrated in Fig 1. Firstly, variations arise from presence
or absence of details that comprise an entity mention. For
instance, mentions of GE could optionally include a suffix (e.g.,
Corp). Secondly, variations arise from different orderings of
the details. For instance, a date mention could refer to the
month before the day (as in September 29th) or vice-versa
(as in 29th of September). Moreover, variations can also
arise from abbreviations and aliasing of the details (e.g. 9 for
September, GE for General Electric).

Typically, name variations are handled using textual similar-
ity functions, such as edit distance and cosine similarity [2],
[3], [4], which ignore the underlying structure in represen-
tations and often lead to erroneous matches. Consider the
following mentions:

(a) General Electric Corporation
(b) General Electric China Corporation
(c) GE CO

Mentions (a) and (b) are textually similar - they differ in just
one token - but correspond to different entities, owing to the

(a) Sample mentions of companies (left two) and a date (right)

(b) Structured representations of sample mentions
Fig. 1: Structured representations of entity mentions

location detail China. Conversely, mentions (a) and (c) are
textually dissimilar but refer to the same entity.

Our key observation is that an entity mention is not merely
a sequence of characters. Instead, it has an internal structured
representation comprised of semantic units [5]. Surface-form
variations arise from variations in the structured representation.
Furthermore, mentions of an entity type typically share seman-
tic units in their representations (see Fig 1b). Knowledge of
these representations for an entity type can enable effective
reasoning to identify two textually dissimilar mentions as
identical and two textually similar mentions as distinct.

While it is possible for programmers to write type-specific
programs that can map mentions to their structured represen-
tations, the process is tedious and labor-intensive. For each
entity type, they have to examine the mentions, identify the
different structured representations and then write programs
for each representation. This has to be repeated for each entity
type. High skill and high effort limits the usability of such
approaches (e.g., [5]).

To address these challenges, we have developed a web-
based system, LUSTRE, that reduces the required skill and
effort by (1) seeking only a few human-comprehensible labels
from the user, (2) automatically generating programs from
the labels that map mentions to their representations, (3)
providing a user-friendly interface to declaratively configure
and generate complex normalization and variant generation
programs. The user can use these programs for downstream
applications (e.g., [6]).



II. SYSTEM OVERVIEW

In this section, we give a brief overview of the system ar-
chitecture and the user interaction model. A fully detailed dis-
cussion of these aspects of LUSTRE is covered in a separate
paper, currently under submission [7] (available upon request)

A. System Architecture

A high-level view of LUSTRE is shown in Fig 2. It has
two main phases for (1) learning structured representations,
and (2) synthesizing normalization and variant generation
functions. Given a list of mentions of an entity type, the
entity representation learner (ERL) discovers the structured
representations iteratively. The output of ERL is a mapping
model that can be applied to other mentions with similar
structured representations. The structured representation of a
mention is a sequence of semantic units where each semantic
unit has a label (e.g. 〈suffix〉 in a company) and a pattern
matcher. In each iteration, ERL would select a mention and
ask the user to provide labels for its semantic units. It would
infer the matchers for the units and generate a mapping
program using these matchers.

Our system uses two types of pattern matchers for the
semantic units: built-in regex-based matchers and custom
dictionary-based matchers. Dictionary-based matchers can be
provided by the user or learned using our domain vocabu-
lary learner (DVL). Once the structured representations are
learned, the user can use LUSTRE to declaratively define
transformations over these structured representations to syn-
thesize programs for normalization and variant generation. The
synthesized programs and the mapping model are packaged as
APIs for downstream applications.

B. User Interaction Model

LUSTRE expects the user to provide a set of unlabeled
mentions of an entity type of interest. Our domain vocabulary
and entity representation learners follow a similar iterative
learning process, wherein a mention is selected for the user
to label in each iteration. The user has to provide labels for
the tokens in the selected mention, such as concept name for
a dictionary or label for a semantic unit. Both the learners
also allow the user to provide feedback on their intermediate
predictions. This interaction model reduces the number of
mentions the user has to label and hides the complexities of
the underlying learning process. We provide an expressive,
declarative framework for generating programs for normal-
ization and variant generation wherein the user only has to
configure a set of generic transformations over the learned
structured representations.

III. LEARNING STRUCTURED REPRESENTATIONS

In LUSTRE, we aim to learn a set of programs that map
entity mentions to their structured representations. Each pro-
gram has a mapping strategy, consisting of a set of matchers,
that decides how a mention is mapped to the semantic units
of a representation.

LUSTRE has several pre-defined generic regular expression
matchers that capture a token with: (1) uppercase alphabetic
characters, (2) lowercase alphabetic characters, (3) mixture
of uppercase and lowercase alphabetic characters, (4)
numeric digits, (5) alphabetic and numeric characters, (6)
special non-word characters Additionally, it can use a set
of dictionary-based matchers: dictionary of words or phrases
for a domain-specific concept. Although crucial in learning
good domain-specific representations, such dictionaries are
often unavailable or cannot be easily generated with limited
contextual information. The user can learn such dictionaries
using our domain-vocabulary learner. Our system learns how
to combine these different matchers for complex semantic
units in the structured representations.

To reduce both the skill and effort required in the learning
process, our system hides the details on how the mentions
are selected for the user to label or how the learned model
generalizes to unseen mentions. The user only has to provide
human-comprehensible labels for a handful of mentions and
optionally feedback on a few intermediate predictions, using
a user-friendly, web-based interface.

Domain Vocabulary Learner

To learn dictionaries for an entity type, the user has to
provide a list of mentions to our domain-vocabulary learner
(DVL). DVL first group the mentions with similar surface-
froms using hierarchial clustering. It uses an active learning
based algorithm, wherein it selects representative mentions
from one of the clusters in each iteration and asks the
user to label them. From the user labels, DVL identifies a
set of preliminary, incomplete dictionaries and incrementally
complete these dictionaries in the subsequent iterations. This
iterative process continues until all the mentions are processed
or the user is satisfied with the dictionaries.

The user-interface for providing labels for concepts in
the selected mention is shown in Fig 3a. The user can
click to select one or more tokens (with dotted line) in
the selected mention. For the selected token(s), such as
the highlighted VARSARTIS, the user can provide a new
custom label or select an existing label. It is not required
for the user to label every token in the mention. The user
can hit the “DONE WITH LABELING” button to complete the
labeling. DVL then derives a generic extraction rule that is
consistent with the user labels. For instance, it can derive a
rule “〈CapitalWord〉〈CapitalWord〉,[2]->SUFFIX" that
extracts the second token as SUFFIX in a two-token substring
where both tokens have capital words. In order to extract
more dictionary entries for the concept SUFFIX, DVL applies
this extraction rule to other mentions in the selected cluster.

Additionally, DVL presents the most uncertain predictions
to the user for verification (see Fig 3b). The user only has to
uncheck the check-boxes corresponding to incorrect predic-
tions. This feedback is used as labeled data for the extraction
rule. In a subsequent generalization step, DVL applies the
extraction rule to the entire dataset, identifies more dictionary
entries, and seeks user labels on the uncertain predictions.



(a) Learning Structured Representations (b) Synthesizing Normalization and Variant Generation Functions
Fig. 2: System Overview

Once the dictionaries are learned, the user can view and edit
them before using them for learning structured representations.

Entity Representation Learner

Given a list of mentions of an entity type, ERL learns the
structured representations as a function of dictionary-based
and regular expression-based matchers. Specifically, it learns
how to combine these matchers to constitute the semantic
units in a representation such that the semantic units are
consistent with the labels provided by the user. Like DVL, it
uses an active learning algorithm to iteratively select candidate
mentions for labeling. ERL selects a mention such that its
structured representation is different from those of previously
labeled mentions so different representations can be learned
quickly with minimal user effort.

ERL uses a similar interface for labeling as DVL with one
key difference. ERL expects the user to label all key semantic
units in a mention. However, to make the task easier, it shows
the labels for the semantic units that could be inferred from the
dictionaries. For instance, given a suffix dictionary, it labels
span INC as 〈suffix〉 and expects user to label VERSARTIS

(e.g., as corename). Once Once it obtains the labels,, ERL
selects a mapping strategy from the many possible sequences
of matchers that are consistent with the user labels. It gen-
erates a program for the strategy and updates its model of
programs. For instance, from the multiple mapping strategies
for VERSARTIS INC:

• 〈corename:AlphaChar〉〈suffix:suffix-dict〉
• 〈corename:AlphaNum〉〈suffix:suffix-dict〉

ERL follows a conservative approach and selects the first
mapping strategy as the regular expression AlphaChar is
more specific than AlphaNum. Since the programs learned
are generic, ERL allows the user control the quality of the
model learned by providing additional feedback on a few
intermediate, uncertain predictions (see Fig 3b). The user only
has to mark these as correct or incorrect. This feedback is used
internally to reason how multiple mapping strategies can be
used for a mention. This iterative process continues until all
the mentions can be mapped to the learned representations or
the user is satisfied with the quality of the model learned.

IV. SYNTHESIZING NORMALIZATION AND VARIANT
GENERATION FUNCTIONS

LUSTRE allows users to configure their normalization and
variant generation functions over the structured representations
learned from the mentions. Specifically, it provides a set
of transformation operators that the user can configure to
manipulate the semantic units of an unseen mention. These
transformed semantic units are then used to compose meaning-
ful variations of entities. LUSTRE provides a configuration
interface, as shown in Figures 3d and 3c, to configure four
types of transformation operators:

• INITIAL: Retain first character of each token in the token
sequence of a semantic unit. The user can also specify
whether a dot should be added to each initial character.

• ORDER: Define a specific order for the semantic units
• DROP: Ignore token sequence of a semantic unit
• MAP: Replace one or more token sequences of a semantic

unit with a user-provided string

It allows user to define multiple configurations for different
tasks. Clicking the + symbol brings up a configuration panel
with the learned semantic units. Optionally, the user can
add custom units for special characters (such as “/ for
separating month, day, year in date mentions). By reordering
(drag-and-drop) and deleting the semantic units, the user can
generate different configuration patterns. The user can further
configure each unit in the pattern by clicking the edit button
(Fig 3c shows the configuration options for 〈name〉 unit). The
user can configure the normalization and variant generation
functions independently, i.e., toggle “EXHAUSTIVE MODE”
for normalization or variant generation. The configuration for
variant generation allows all the transformation operators so
that all possible variations with transformed semantic units can
be generated (see Fig 3c). However, only some dynamically
determined set of operators is used for normalization as all
mentions have to be normalized to a unique representation.
Fig 3d shows sample configurations for company name
mentions. At runtime, these configured functions are applied
to the structured representation of a mention. Consider the
variant generation configuration (the lower panel) shown in
Fig 3d, wherein (1) 〈industry〉, 〈suffix〉, and 〈location〉 units
can all be dropped, (2) if the span mapped to 〈suffix〉 is “Corp”



(a) Labeling interface (b) User feedback (c) Configuration dialog

(d) Configuration interface (e) Variant generation tester
Fig. 3: Screenshots of LUSTRE

then it can be transformed to “Corporation”, (3) if the span
mapped to 〈location〉 is “DE” then it can be transformed to
”Germany”, (4) abbreviate the span mapped to ¡name¿ (with
and without dot). LUSTRE also allows the user to test run
(see Fig 3e) and adjust the configuration interactively before
exporting the corresponding programs for their applications.

V. DEMONSTRATION FLOW

We will use a list of company names to show how LUSTRE
helps a user learn programs for structured representations
from a few labeled mentions, and configure normalization and
variant generation functions (a demo video is available at https:
//youtu.be/hhM3BkvTZbE). The user would do the following:
1. Executing Domain Vocabulary Learner.

a) Upload a data file containing a list of company mentions.
b) Using the interface, label a tokenized mention.
c) Submit the labels. Go through the intermediate predic-

tions and identify mistakes by clicking their checkboxes.
d) Repeat steps a) and b) until all mentions are processed or

the dictionaries meet user’s needs. Use the dictionaries
in learning structured representations.

2. Executing Entity Representation Learner.
Learn structured representations of company mentions
with ERL. The user interface of ERL is identical to that
of DVL with two differences: (1) mentions shown in
ERL may have been partially labeled, (2) the user needs
to identify all the semantic units.

3. Configuring Normalization & Variant Generation
a) Specify a normalization configuration and a vari-

ant generation configuration. For normalization, trans-
form the company names into the canonical form
“NAME INDUSTRY SUFFIX (LOCATION)”. For vari-
ant generation, use pattern “NAME INDUSTRY SUFFIX

LOCATION”. Show how different transformations can be
configured for each semantic unit with only a few clicks
and simple text input.

b) Test provided configurations on multiple company men-
tions having different structures (see Fig 3e).

The demo participants can also test LUSTRE with person
names and dates or their own list of entity mentions.

REFERENCES

[1] M. Dredze, P. McNamee, D. Rao, A. Gerber, and T. Finin, “Entity
disambiguation for knowledge base population,” ser. COLING 2010, pp.
277–285.

[2] Z. Zheng, F. Li, M. Huang, and X. Zhu, “Learning to link entities with
knowledge base,” in NAACL HLT, 2010, pp. 483–491.

[3] J. Lehmann, S. Monahan, L. Nezda, A. Jung, and Y. Shi, “Lcc approaches
to knowledge base population at tac 2010.” in TAC, 2010.

[4] X. Liu, Y. Li, H. Wu, M. Zhou, F. Wei, and Y. Lu, “Entity linking for
tweets.” in ACL (1), 2013, pp. 1304–1311.

[5] A. Arasu and R. Kaushik, “A grammar-based entity representation frame-
work for data cleaning,” ser. SIGMOD ’09, 2009, pp. 233–244.

[6] K. Qian, L. Popa, and P. Sen, “Active learning for large-scale entity
resolution,” in CIKM 2017 (to appear).

[7] N. Bhutani, Y. Li, H. V. Jagadish, K. Qian, M. Hernandez, and M. Vasa,
“Exploiting structure in representation of named entities,” in (under
review), 2017.

https://youtu.be/hhM3BkvTZbE
https://youtu.be/hhM3BkvTZbE

	Introduction
	System Overview
	System Architecture
	User Interaction Model

	Learning Structured Representations
	Synthesizing Normalization and Variant Generation Functions
	Demonstration Flow
	References

