Exploiting Structure in Representation of Named Entities using Active Learning

Nikita Bhutani*

Kun Qian[†] Yunyao Li[†] H. V. Jagadish^{*} Mauricio A. Hernandez[†] Mitesh Vasa[†]

* University of Michigan, Ann Arbor † IBM Research, Almaden

Kumagai Professor of Engineering

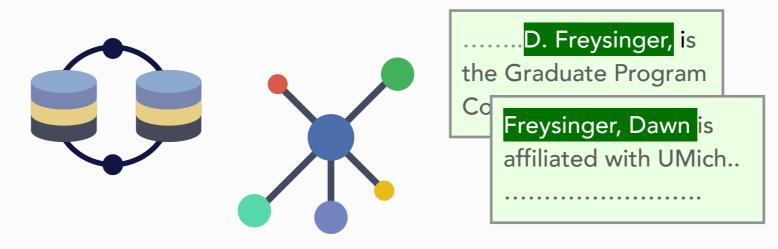
The Helen L. Crocker Faculty Scholar

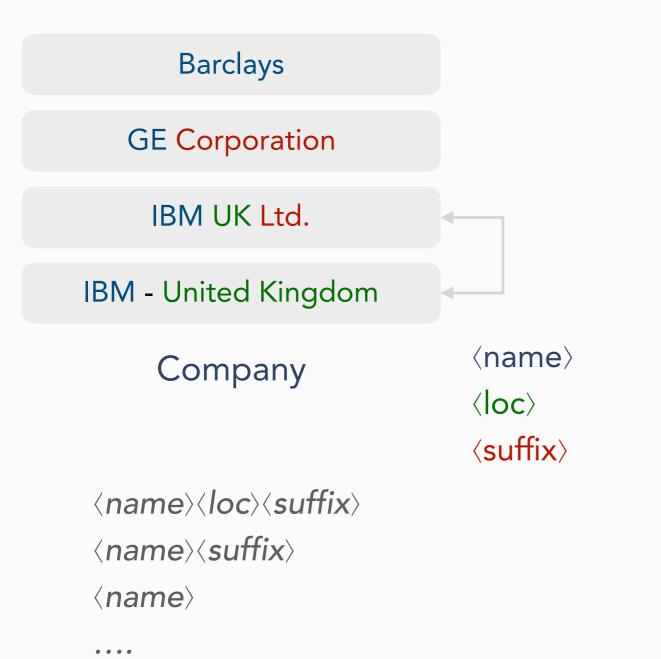
Professor of Public Policy

Kumagai Prof. of Engg.

Academic Title

Entity Linking/Resolution/De-duplication

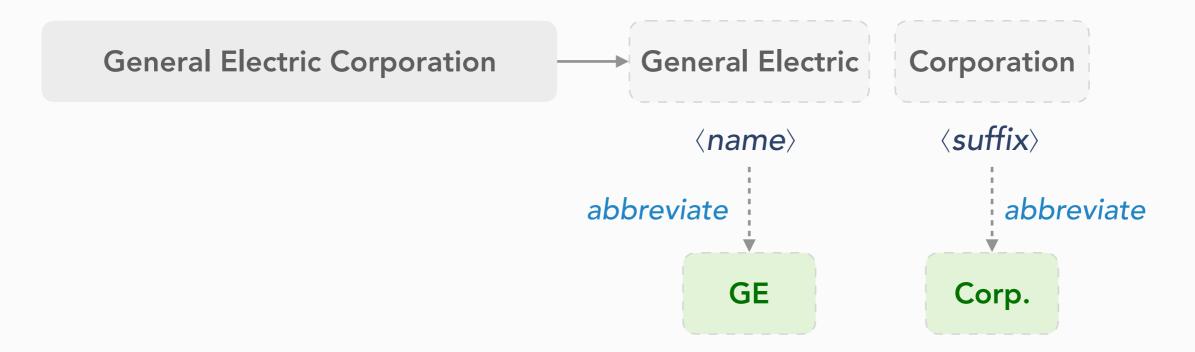




Kumagai Professor of Engineering The Helen L. Crocker Faculty Scholar Professor of Public Policy Kumagai Prof. of Engg. ⟨prefix⟩ Academic Title $\langle position \rangle$ *(specialty)* <prefix><position><specialty> <prefix><position> cposition

. . . .

Structural similarity is more reliable than textual similarity



reasoning over structured representations is more robust!

textual similarity can be misleading!

How do we obtain these structured representations?

<name><suffix>
<name>
<name>
<subsidiary><suffix>...
<structured representations</pre>

"General Electric Corp." $\langle name \rangle \quad \langle suffix \rangle$

programs

Manually¹

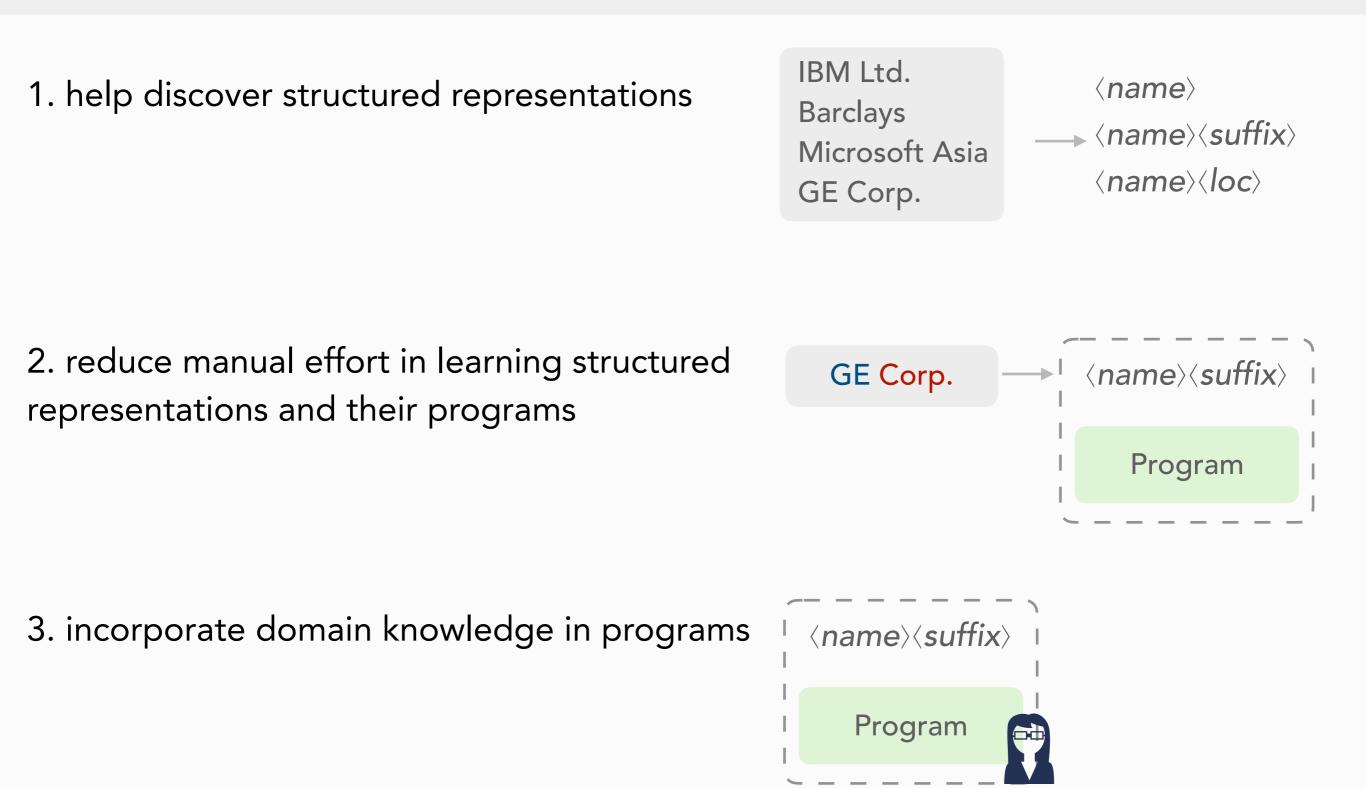
- incorporate domain knowledge (e.g. <suffix> lexicon)
- error-prone, specialized skills, expensive tuning

Programmable Framework²

- directly manipulate representation of entities
- user has to define a program of grammar rules to parse each mention

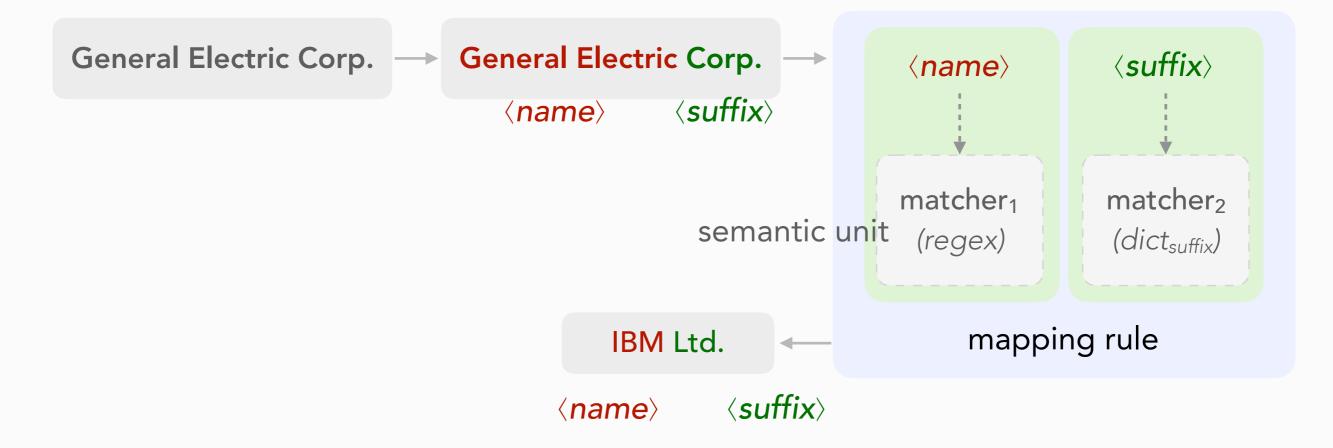
⁵¹ [Campos et al., 2015], ² [Arasu and Kaushik, 2009]

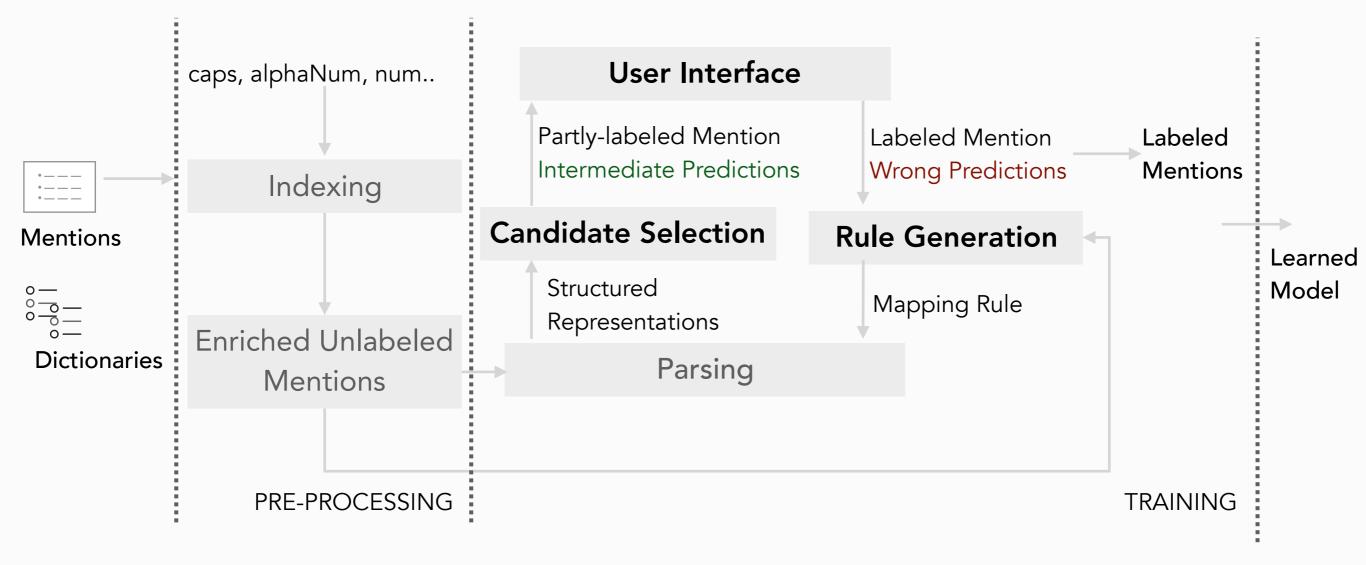
Reducing user-effort



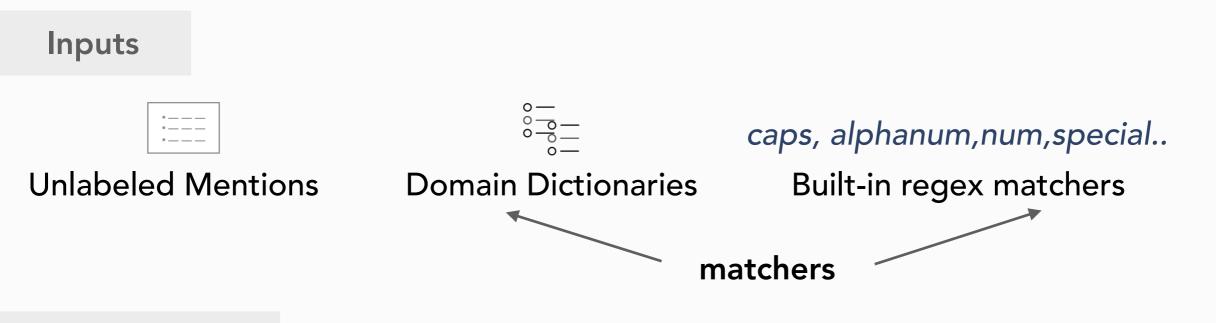
Learn a model of mapping rules with **minimal user effort** by:

- Iteratively seeking labels for informative mentions (Active Learning)
- Automatically infer mapping rules from user labels (Rule Generation)





Inputs and Pre-processing



Preprocessing

Evaluate matchers against unlabeled mentions for candidate selection and rule generation

Rank matchers to resolve ties: *d_{concept}* > *caps* > *alphanum* > *num* > *special* > *wild*

Selecting Informative Mention - Query Strategy

Informative Mention

Similar structure as unlabeled mentions e.g. IBM Ltd. ~ Apple Inc., GE Corp.

Correlation Score:

 $c(m_i) = \mathbf{g}(sim(s_i, s_u)), \text{ where } u \in U$

 $sim(s_i, s_u) = 1 - edit distance(s_i, s_u)$

max edit distance

where s_i is the structure of m_i

edit distance(IBM Ltd., GE Corp.) = 0

edit distance(IBM Ltd., Microsoft Asia Inc.) = 1

Unknown or Uncertain structure e.g. GE Oil & Gas

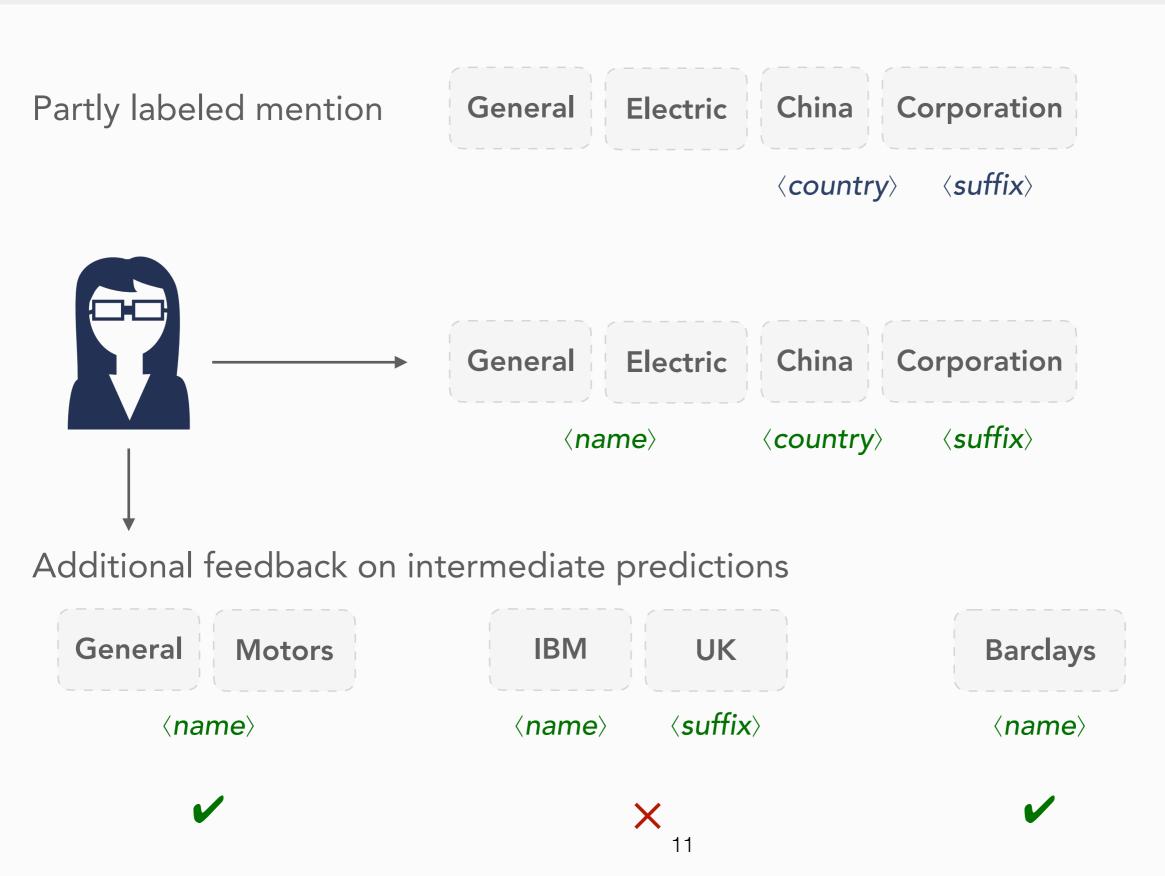
Uncertainty Score:

 $f(m_i) = f(P_{r_s})$ where r_s is the mapping rule of s

Higher the reliability of a mapping rule, lower the uncertainty of its structure

Utility Score:

 $u(m_i) = c(m_i) \times f(m_i)$ $m^* = \underset{m_i}{\operatorname{argmax}} u(m_i)$



Non-Trivial: semantic units can span multiple tokens and matchers

Solution: reliable rule as the sequence of most **selective**³ matchers where selectivity is expected number of matches of a matcher in a dataset

 $\langle name:: caps\{1,2\} \rangle \langle country:: d_{country} \rangle \langle suffix::d_{suffix} \rangle$

Rule Reliability: for query strategy and for resolving structural ambiguities

 $P_{r_s} = 1 - selectivity(p^*)$ where $p^* = \underset{i}{\operatorname{argmin}} selectivity(p_i | p_i \in r_s)$

 $P_{r_s}^{j} = P_{r_s}^{i} \times (1 - \lambda \text{ frac. incorrect pred})$

For a new rule, estimate as a function of selectivity of matchers in the rule

For a learned rule, update based on the fraction of predictions of the rule marked incorrect by user

	Туре	Train	In-Domain	Out-of-domain			
	Person	200	200	200			
Datasets	Company	200	100	200	ACE 2005, Freebase		
	Tournament	50	50	-			
	Academic Title	175	175	-			
	STG ¹ : hand-crafted programs used in production Linear-Chain CRF: sequence labeling with matchers as features						
	Linear-Chain CRF: sequence labeling with matchers as features LUSTRE ^t : LUSTRE with tf-idf based query strategy						
	Precision, P: f	raction o	of predicti	ons that are co	orrect		
Evaluation Metric	Recall, R: fraction of correct structures that are predicted						
	Manual effort,			ethod X, wł sted by X	here $X \in \{CRF, LUSTRE\}$		

Experiments - Qualitative Analysis

Туре	Method		In-Domai	n		Out-of-domain	
	wethod	Р	R	F ₁	Р	R	F ₁
	STG	0.92	0.92	0.92	0.85	0.85	0.85
Person	CRF	0.97	0.97	0.97	0.90	0.90	0.90
T EISON	LUSTREt	0.98	0.95	0.96	0.92	0.90	0.91
	LUSTRE	0.99	0.97	0.98	0.92	0.95	0.93
Company	STG	0.83	0.83	0.83	0.79	0.79	0.79
	CRF	0.87	0.87	0.87	0.85	0.85	0.85
	LUSTREt	0.84	0.77	0.80	0.78	0.60	0.68
	LUSTRE	0.95	0.86	0.90	0.91	0.85	0.88
	CRF	0.70	0.70	0.70	-	-	-
Tournament	LUSTREt	0.96	0.68	0.79	-	-	-
	LUSTRE	0.96	0.90	0.93	-	-	-
Academic Title	CRF	0.69	0.69	0.69	-	-	-
	LUSTREt	0.36	0.23	0.28	-	-	-
	LUSTRE	0.79	0.65	0.72	-	-	-

Learned Models (LUSTRE, CRF) > Manually Crafted (STG)

Experiments - Qualitative Analysis

Tupo	Method P		In-Domain			Out-of-domain	
Туре		Р	R	F ₁	Р	R	F ₁
	STG	0.92	0.92	0.92	0.85	0.85	0.85
Person	CRF	0.97	0.97	0.97	0.90	0.90	0.90
T EISON	LUSTREt	0.98	0.95	0.96	0.92	0.90	0.91
	LUSTRE	0.99	0.97	0.98	0.92	0.95	0.93
	STG	0.83	0.83	0.83	0.79	0.79	0.79
Company	CRF	0.87	0.87	0.87	0.85	0.85	0.85
Company	LUSTREt	0.84	0.77	0.80	0.78	0.60	0.68
	LUSTRE	0.95	0.86	0.90	0.91	0.85	0.88
	CRF	0.70	0.70	0.70	-	-	-
Tournament	LUSTREt	0.96	0.68	0.79	-	-	_
	LUSTRE	0.96	0.90	0.93	-	-	-
Academic Title	CRF	0.69	0.69	0.69	_	-	_
	LUSTREt	0.36	0.23	0.28	-	-	-
	LUSTRE	0.79	0.65	0.72	-	-	-

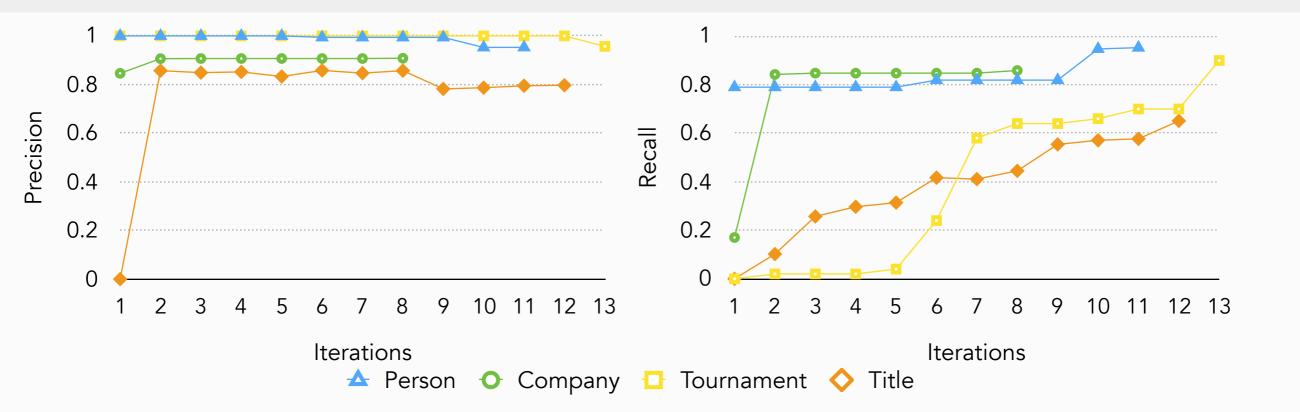
Complex entities have more variations. LUSTRE outperforms other methods for complex types.

Experiments - Qualitative Analysis

Туре	Method		In-Domai	n		Out-of-domain	
	IVIELIIOO	Р	R	F ₁	Р	R	F ₁
	STG	0.92	0.92	0.92	0.85	0.85	0.85
Person	CRF	0.97	0.97	0.97	0.90	0.90	0.90
1 615011	LUSTREt	0.98	0.95	0.96	0.92	0.90	0.91
	LUSTRE	0.99	0.97	0.98	0.92	0.95	0.93
Carran	STG	0.83	0.83	0.83	0.79	0.79	0.79
	CRF	0.87	0.87	0.87	0.85	0.85	0.85
Company	LUSTREt	0.84	0.77	0.80	0.78	0.60	0.68
	LUSTRE	0.95	0.86	0.90	0.91	0.85	0.88
	CRF	0.70	0.70	0.70	-	-	-
Tournament	LUSTREt	0.96	0.68	0.79	-	-	-
	LUSTRE	0.96	0.90	0.93	-	-	-
Academic Title	CRF	0.69	0.69	0.69	_	-	_
	LUSTREt	0.36	0.23	0.28	-	-	-
	LUSTRE	0.79	0.65	0.72	-	-	-

Good out-of-domain performance indicates LUSTRE captures structures regardless of data source.

Experiments - Effectiveness



Constant precision indicates "quality" rules are learned - **effective program synthesis** Increasing recall indicates new rules are learned - **effective query strategy** Few iterations (8-13) indicate low manual effort

Туре	LUSTRE	CRF	Manual effort, a
Person	0.089	0.005	
Company	0.125	0.004	
Tournament	0.072	0.014	
Title	0.060	0.004	
	18		4

Experiments - Usefulness

	MULTIR ⁵ : uses weak supervision data created by exact matching textual mentions to Freebase entities
	matching variations: textual mentions to variations of Freebase
Relation Extraction	entities of type Person and Company
	# of exact matches: 24,882 sentences
	# of matches to variations: 34,197 sentences
	F1-score: Increased by 3%

19

Entity Resolution⁴

Refer paper for more details

Framework to reason about name variations of entities based on their **structured representations**

An active-learning approach to learn structures for an entity type with minimal human input

Automatically synthesize generalizable programs from human-understandable labels for structures

Demo Paper: An Interactive System for Entity Structured Representation and Variant Generation, ICDE 2018

Video Link: https://www.youtube.com/watch?v=llaT4Sz6ul4

Thank You