NestIE
 NESTED PROPOSITIONS IN
 OPEN INFORMATION EXTRACTION

Nikita Bhutani, H V Jagadish, Dragomir Radev

NestIE
 NESTED PROPOSITIONS IN OPEN INFORMATION EXTRACTION

Nikita Bhutani, H V Jagadish, Dragomir Radev

EXTRACTING KNOWLEDGE FROM TEXT

Closed KB

Ontology
co-founder death_date birth_date

"Steve Jobs, who co-founded Apple.."

(Steve Jobs, co-founder, Apple)

EXTRACTING KNOWLEDGE FROM TEXT

Closed KB

Ontology
co-founder death_date birth_date

"Steve Jobs, who co-founded Apple.."

(Steve Jobs, co-founder, Apple)
expensive, not-scalable
pre-defined relations

EXTRACTING KNOWLEDGE FROM TEXT

Closed KB
Ontology
co-founder death_date birth_date

Open KB*

Ontology
relation schema

" 8.8 million have lost their jobs.."

(8.8 million people, lost, their jobs)

EXTRACTING KNOWLEDGE FROM TEXT

Closed KB

Ontology
co-founder death_date birth_date
"Steve Jobs, who co-founded Apple.."
(Steve Jobs, co-founder, Apple)

Open KB*

Ontology
relation schema

" 8.8 million have lost their jobs.."
\square
(8.8 million people, lost, their jobs)

- broad coverage
- light-weight structure

PROPOSITIONS FOR BINARY RELATIONS

Binary

" 8.8 million people have lost their jobs since the start of the recession."
Proposition: (8.8 million people, lost, their jobs)

PROPOSITIONS FOR BINARY RELATIONS

Binary

" 8.8 million people have lost their jobs since the start of the recession."
Proposition: (8.8 million people, lost, their jobs)

PROPOSITIONS FOR BINARY RELATIONS

Binary++: Contextual Information

"The Bureau of Labor Statistics believes that 8.8 million people have lost their jobs since the start of the recession."
Proposition¹: ((8.8 million people, lost, their jobs) attributedTo believe, Bureau of Labor Statistics)

PROPOSITIONS FOR BINARY RELATIONS

Binary++: Contextual Information

"The Bureau of Labor Statistics believes that 8.8 million people have lost their jobs since the start of the recession."

```
Proposition¹: ((8.8 million people, lost, their jobs) attributedTo believe, Bureau of Labor Statistics)
```

- few argument types: conditional, attribution, temporal..

PROPOSITIONS FOR BINARY RELATIONS

Binary++: n -ary relation

" 8.8 million people lost their jobs in the Great Depression."
Proposition²: (8.8 million people, lost, their jobs, in the Great Depression)

PROPOSITIONS FOR BINARY RELATIONS

Binary++: n -ary relation

" 8.8 million people lost their jobs in the Great Depression."
Proposition²: (8.8 million people, lost, their jobs, in the Great Depression)

- few grammatical constructs to identify constituents: limited coverage

UNINFORMATIVE \& INCOMPLETE PROPOSITIONS

Long arguments are not informative
"Sheryl Sandberg is the COO of Facebook and author of Lean In." Proposition3: (Sheryl Sandberg, be, COO of Facebook and author of Lean In)

UNINFORMATIVE \& INCOMPLETE PROPOSITIONS

Long arguments are not informative
"Sheryl Sandberg is the COO of Facebook and author of Lean In." Proposition3: (Sheryl Sandberg, be, COO of Facebook and author of Lean In)

- an accurate fact may itself contain another accurate fact

UNINFORMATIVE \& INCOMPLETE PROPOSITIONS

Long arguments are uninformative
"Sheryl Sandberg is the COO of Facebook and author of Lean In." Proposition³: (Sheryl Sandberg, be, COO of Facebook and author of Lean In)

- an accurate fact may itself contain another accurate fact

Proposition: (Sheryl Sandberg, be, COO of Facebook)
Proposition: (Sheryl Sandberg, be, author of Lean In)

UNINFORMATIVE \& INCOMPLETE PROPOSITIONS

Missing context makes propositions incomplete
" 8.8 million people have lost their jobs since the start of the recession." Proposition ${ }^{1}$: (8.8 million people, lost, their jobs)

UNINFORMATIVE \& INCOMPLETE PROPOSITIONS

Missing context makes propositions incomplete
" 8.8 million people have lost their jobs since the start of the recession." Proposition ${ }^{1}$: (8.8 million people, lost, their jobs)

- limited expressivity

NESTED PROPOSITIONS

Complex Assertions	n-ary relations nested relations subordinate clauses	Tripleslimited expressivity non-minimality lost context
	Complex User Information Needs	

NESTED PROPOSITIONS

Complex User Information Needs

Challenges

$$
\text { Nested Representation } \begin{aligned}
& (X, \text { reported, }(Y, \text { be, Z)) } \\
& ((X, \text { lost, } Y), \text { in, Z)...... }
\end{aligned}
$$

NESTED PROPOSITIONS

Complex
Assertions
n-ary relations nested relations
subordinate clauses

Complex User Information Needs
Challenges

$$
\text { Nested Representation } \begin{aligned}
& (X, \text { reported, }(Y, \text { be, Z)) } \\
& ((X, \text { lost, } Y), \text { in, } Z) \ldots . .
\end{aligned}
$$

KB with light-weight nested structure: NestIE

OUTLINE

- System Architecture
- Seed Set Construction
- Pattern Learning
- Proposition Extraction
- Proposition Linking
- Experiments
- Analysis

1 Seed Fact Extraction and Bootstrapping
2 Pattern Learning
3 Proposition Extraction and Linking

SEED EXTRACTION AND BOOTSTRAPPING

RTE (Recognizing Textual Entailment) Dataset*
Hypothesis
simple, short sentences
hand-written templates

SEED EXTRACTION AND BOOTSTRAPPING

RTE (Recognizing Textual Entailment) Dataset*

Hypothesis

simple, short sentences
hand-written templates

Template
dependency sub-tree nested representation

SEED EXTRACTION AND BOOTSTRAPPING

RTE (Recognizing Textual Entailment) Dataset*

Hypothesis
simple, short sentences
hand-written templates

Template
dependency sub-tree nested representation

Statement

long, complex sentences
learn syntactic variants

SEED EXTRACTION AND BOOTSTRAPPING

RTE (Recognizing Textual Entailment) Dataset*

Hypothesis

simple, short sentences hand-written templates

Template

dependency sub-tree nested representation

Statement

long, complex sentences learn syntactic variants

SEED EXTRACTION AND BOOTSTRAPPING

RTE (Recognizing Textual Entailment) Dataset*

Hypothesis

simple, short sentences hand-written templates

Template

dependency sub-tree nested representation

Statement

long, complex sentences
learn syntactic variants

A body has been found by police.
(body, [found, by], police)

Fallujah is an Iraqi city
(Fallujah, be, city)

SEED EXTRACTION AND BOOTSTRAPPING

RTE (Recognizing Textual Entailment) Dataset*

Hypothesis

simple, short sentences hand-written templates

Template

dependency sub-tree nested representation

Statement

long, complex sentences learn syntactic variants

BOOTSTRAPPING

"A body was found by U.S. military police."

(arg1, [rel, by], arg2)

BOOTSTRAPPING

"A body was found by U.S. military police."

"A senior official in Iraq said the body, which was found by U.S. military police, was thrown from a vehicle."

PATTERN LEARNING

PATTERN LEARNING

PATTERN LEARNING

Extend existing bootstrapping approaches:

- Match all nodes in the template and not just two arguments (and relation)
- Learn nested extraction patterns

LEARNED PATTERNS

LEARNED PATTERNS

A body has been found by police.
Police found a body.
(arg1, [rel, by], arg2)

LEARNED PATTERNS

LEARNED PATTERNS

EXTRACTING PROPOSITIONS

"A body was found by U.S. military police."
body $\stackrel{\text { nsubjpass }}{\longleftrightarrow}$ found $\xrightarrow{\text { nmod:agent }}$ police $\cdots \cdots$. (body, [found, by], police)

EXTRACTING PROPOSITIONS

"A body was found by U.S. military police."

- Extend arguments on: nmod, amod, compound, nummod, det, neg
- Extend relations on: advmod, neg, aux, auxpass, cop, nmod

LINKING PROPOSITIONS

"A senior official in Iraq said the body, which was found by U.S. military police, was thrown from a vehicle."

P1: (the body, found by, U.S. military police)
P2: (A senior official in Iraq, said, \varnothing)
Missing Link
P3: ((the body, was thrown, \varnothing), from, a vehicle)

LINKING PROPOSITIONS

"A senior official in Iraq said the body, which was found by U.S. military police, was thrown from a vehicle."

P1: (the body, found by, U.S. military police)
P2: (A senior official in Iraq, said, \varnothing)
Missing Link

P3: ((the body, was thrown, \varnothing), from, a vehicle)

	too long
Template	too complex
difficult to define	

LINKING PROPOSITIONS

"A senior official in Iraq said the body, which was found by U.S. military police, was thrown from a vehicle."

P1: (the body, found by, U.S. military police)
P2: (A senior official in Iraq, said, \varnothing)

Missing Link

P3: ((the body, was thrown, \varnothing), from, a vehicle)

	too long
Template	too complex
difficult to define	

Use syntactic cues to identify missing links more details in paper

EXPERIMENTAL SETUP

Dataset(s):

- 200 random sentences from Wikipedia*
- 200 random sentences from New York Times (NYT)*
* Datasets released with ClausIE

EXPERIMENTAL SETUP

Dataset(s):

- 200 random sentences from Wikipedia*
- 200 random sentences from New York Times (NYT)*

Baseline Systems:

- Reverb
- ClausIE
- Ollie
* Datasets released with ClausIE

EXPERIMENTAL SETUP

Dataset(s):

- 200 random sentences from Wikipedia*
- 200 random sentences from New York Times (NYT)*

Baseline Systems:

- Reverb
- ClausIE
- Ollie

Two annotators (CS graduate students) manually label the propositions for minimality, correctness, completeness: pessimistic approach Inter-annotator agreement: 0.59 (kappa score)

* Datasets released with ClausIE

EVALUATION CRITERIA

INFORMATIVENESS

Set of propositions is ranked on a scale of 0-5, based on whether the set captured the meaning of the statement.

A proposition is correct if it was asserted in the text and if it correctly captured the contextual information.

MINIMALITY

A proposition is minimal if the arguments or relation are not excessively long.

RESULTS

Dataset	Metric	Reverb	Ollie	ClausIE	NestIE
NYT	Informativeness	$1.437 / 5$	$2.09 / 5$	$2.32 / 5$	$2.762 / 5$
	Correct	$187 / 275(0.680)$	$359 / 529(0.678)$	$527 / 882(0.597)$	$469 / 914(0.513)$
	Minimal (of correct)	$161 / 187(0.861)$	$238 / 359(0.663)$	$199 / 527(0.377)$	$355 / 469(0.757)$
Wikipedia	Informativeness	$1.63 / 5$	$2.267 / 5$	$2.432 / 5$	$2.602 / 5$
	Correct	$194 / 258(0.752)$	$336 / 582(0.577)$	$453 / 769(0.589)$	$415 / 827(0.501)$
	Minimal (of correct)	$171 / 194(0.881)$	$256 / 336(0.761)$	$214 / 453(0.472)$	$362 / 415(0.872)$

RESULTS

Dataset	Metric	Reverb	Ollie	ClausIE	NestIE
NYT	Informativeness	$1.437 / 5$	$2.09 / 5$	$2.32 / 5$	$2.762 / 5$
	Correct	$187 / 275(0.680)$	$359 / 529(0.678)$	$527 / 882(0.597)$	$469 / 914(0.513)$
	Minimal (of correct)	$161 / 187(0.861)$	$238 / 359(0.663)$	$199 / 527(0.377)$	$355 / 469(0.757)$
Wikipedia	Informativeness	$1.63 / 5$	$2.267 / 5$	$2.432 / 5$	$2.602 / 5$
	Correct	$194 / 258(0.752)$	$336 / 582(0.577)$	$453 / 769(0.589)$	$415 / 827(0.501)$
	Minimal (of correct)	$171 / 194(0.881)$	$256 / 336(0.761)$	$214 / 453(0.472)$	$362 / 415(0.872)$

NestIE has 1.1-1.9 times higher informativeness score than other systems

RESULTS

Dataset	Metric	Reverb	Ollie	ClausIE	NestIE
NYT	Informativeness	$1.437 / 5$	$2.09 / 5$	$2.32 / 5$	$2.762 / 5$
	Correct	$187 / 275(0.680)$	$359 / 529(0.678)$	$527 / 882(0.597)$	$469 / 914(0.513)$
	Minimal (of correct)	$161 / 187(0.861)$	$238 / 359(0.663)$	$199 / 527(0.377)$	$355 / 469(0.757)$
Wikipedia	Informativeness	$1.63 / 5$	$2.267 / 5$	$2.432 / 5$	$2.602 / 5$
	Correct	$194 / 258(0.752)$	$336 / 582(0.577)$	$453 / 769(0.589)$	$415 / 827(0.501)$
	Minimal (of correct)	$171 / 194(0.881)$	$256 / 336(0.761)$	$214 / 453(0.472)$	$362 / 415(0.872)$

- NestlE has 1.1-1.9 times higher informativeness score than other systems
- NestlE has more correct propositions than Ollie and Reverb

RESULTS

Dataset	Metric	Reverb	Ollie	ClausIE	NestIE
NYT	Informativeness	$1.437 / 5$	$2.09 / 5$	$2.32 / 5$	$2.762 / 5$
	Correct	$187 / 275(0.680)$	$359 / 529(0.678)$	$527 / 882(0.597)$	$469 / 914(0.513)$
	Minimal (of correct)	$161 / 187(0.861)$	$238 / 359(0.663)$	$199 / 527(0.377)$	$355 / 469(0.757)$
Wikipedia	Informativeness	$1.63 / 5$	$2.267 / 5$	$2.432 / 5$	$2.602 / 5$
	Correct	$194 / 258(0.752)$	$336 / 582(0.577)$	$453 / 769(0.589)$	$415 / 827(0.501)$
	Minimal (of correct)	$171 / 194(0.881)$	$256 / 336(0.761)$	$214 / 453(0.472)$	$362 / 415(0.872)$

- NestlE has 1.1-1.9 times higher informativeness score than other systems
- NestlE has more correct propositions than Ollie and Reverb
- NestIE has comparable precision, higher minimality and informativeness than ClauseIE

DISCUSSION

Do nested propositions improve minimality of any extractor?

DISCUSSION

Do nested propositions improve minimality of any extractor?

Ollie propositions

DISCUSSION

Do nested propositions improve minimality of any extractor?

Ollie propositions

Filter: n -ary relations, long arguments

Candidates for nested propositions

DISCUSSION

Do nested propositions improve minimality of any extractor?

ERROR ANALYSIS

Incorrect dependency parsingaffects pattern matching and linkingNull argumentsdisabling null arguments improves precision by 4\%-6\%27%Aggressive generalizationpatterns to unseen relations
Unidentified dependency typestypical in long and complex sentencesLinking errorsproposition linking rules are too generic20\%

CONTRIBUTIONS AND FUTURE WORK

- Proposed a novel nested representation to express complex assertions
- Nested representation helps achieve higher minimality and informativeness
- Extended existing bootstrapping techniques to learn dependency-based extraction patterns for nested representation

CONTRIBUTIONS AND FUTURE WORK

- Proposed a novel nested representation to express complex assertions
- Nested representation helps achieve higher minimality and informativeness
- Extended existing bootstrapping techniques to learn dependency-based extraction patterns for nested representation

Future directions:

- Nested propositions for other tasks: open question answering, SRL, ontology learning
- Bootstrapping with bigger and nosier datasets
- Sentence simplification to under longer sentences correctly

CONTRIBUTIONS AND FUTURE WORK

- Proposed a novel nested representation to express complex assertions
- Nested representation helps achieve higher minimality and informativeness
- Extended existing bootstrapping techniques to learn dependency-based extraction patterns for nested representation

Future directions:

- Nested propositions for other tasks: open question answering, SRL, ontology learning
- Bootstrapping with bigger and nosier datasets
- Sentence simplification to understand longer sentences correctly

REFERENCES

- Open Question Answering over Curated and Extracted Knowledge Bases Fader et al., 2014, KDD
- Paraphrase-Driven Learning for Open Question Answering Fader et al., 2013, ACL
- ClausIE: Clause-based Open Information Extraction Corro et al., 2013, WWW
- Open Language Learning for Information Extraction

Mausam et al., 2012, EMNLP

- Natural Language Questions for the Web of Data

Mohamed, 2012, EMNLP-CoNLL

- Identifying Relations for Open Information Extraction

Fader et al., 2011, EMNLP

- Open Information Extraction using Wikipedia Wu et al., 2010, ACL
- Open Information Extraction from the Web

Banko et al., 2007, IJCAI

BACKUP SLIDES

- What information is expressed?
- How much to retain?
- How to identify it? e.g. non-verb mediated propositions, Messi, a golden ball winner, plays in Barcelona

RELATED WORK - Ollie

- Unlike previous extractors, can capture relations not mediated by verbs
"There are plenty of taxis available at Bali airport."
- Extend propositions to include contextual information

AttributedTo: who hopes, believes, said or doubts the information ClausalModifier: extract information that is conditionally true

- Use Reverb extractions to bootstrap a training corpus that includes dependency path, relation words and sentence
- Learn open patterns to extract binary relations from unseen text

RELATED WORK - Ollie

- Unlike previous extractors, can capture relations not mediated by verbs
"There are plenty of taxis available at Bali airport."
- Extend propositions to include contextual information

AttributedTo: who hopes, believes, said or doubts the information ClausalModifier: extract information that is conditionally true

- Use Reverb extractions to bootstrap a training corpus that includes dependency path, relation words and sentence
- Learn open patterns to extract binary relations from unseen text
- NestIE doesn't focus exclusively on binary relations. Uses seed templates that are more expressive.

RELATED WORK - ClausIE

- Dependency-based extractor
- Exploits knowledge of English grammar to detect clause constituents and type of each clause in a sentence
- Derive triples (possibly n-ary) from constituents
- Requires no training data, labeled or unlabeled
- Captures a subset of grammatical constructs to identify constituents
- Minimality is not the primary goal of the system

RELATED WORK - ClausIE

- Dependency-based extractor
- Exploits knowledge of English grammar to detect clause constituents and type of each clause in a sentence
- Derive triples (possibly n-ary) from constituents
- Requires no training data, labeled or unlabeled
- Captures a subset of grammatical constructs to identify constituents
- Minimality is not the primary goal of the system
- NestIE uses known grammatical constructs for generating seed set with minimal arguments. Bootstraps to learn more constructs that map to similar representation

Questions to answer:

- Why is the problem worth solving?
- Core difference between your method and all those that came before
- what does your method accomplishes
- why accomplish more?
- what is the evidence that it works better?
- one message

